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The paper is the second work in a series devoted to nonequilibrium thermodynamics of linear systems with 

memory. A theorem is proved that contains necessary and sufficient conditions which should be satisfied by 

constitutive equations for such systems in order to meet the second law of thermodynamics. 

Introduction. In the first article of the series [1 ], the main statements and postulates of the theory of linear 

thermodynamic systems with memory were formulated, an analog of the Coleman-Owen theorem for systems of 

the type was presented, and several subsidiary results (Lemmas 1-4) were proved. For all the notations and 

definitions see the preceding article. Here we will refer to expressions, postulates, and lemmas from this article by 

the number 1 in square brackets. 

Here we will prove Our main result, the theorem containing necessary and sufficient conditions for 

applicability of the second law of thermodynamics in the form of postulate P I [ 1 ]. 

Theorem 1. The second principle in the form of the postulate PI is fulfilled if and only if the generalized 

modulus E and the relaxational function R have the properties 

E = E x (I) 

RF(CO) ) >0 (2a) 

for allCO E R , a  E S*. 
o 

The function RE in (2a) is defined in terms of R in (1.22) [1 ] and 0.27) [1 ]. 

We should note that according to Lemma 1 [1 ] condition (2a) can be presented in a different form: 

X 
( a * ,  (R L(u + /w)  + R  L (k t -  / c o ) ) a ) > 0  (2b) 

forallCO E R , a  E S ~ 
Separating the real and imaginary parts in (2a& one can express (2a) in terms of real-valued quantities: 

X X X 
( a ,  (R c(co/ + R c  ( c o / ) a ) + ( f l ,  (R c(CO/+R c (COl) r )  + 2 ( f l ,  (R s (CO/-Rs  (CO))a)>-0 (2c1 

for all co_>0;a ,  f l E  S. 
Here RL, Rc, Rs, and RF are defined according to (1.24)-(1.27) [1 ]. Similar properties of relaxational 

functions are already known in fluid mechanics and other branches of thermodynamics [1-6 ] as corollaries of the 
irreversibility principle. However, the main value of the result obtained consists in the proof of the fact that the 
given properties are not only the corollaries of the second principle, but also are sole corollaries of the principle, 

the latter result being obtained within a rather general context. 
1. Proof of Necessity in Theorem 1. In order to prove necessity here, we must show that conditions (1) 

and (2) imposed on E and R stem from P1 [1 ]. 
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Let P1 [1 ] be fulfilled. Let us show first that the symmetry of the generalized modulus E, i.e., Eq. (1), 

follows from the postulate. Let us consider an arbitrary process h of duration T such that 

h i(T) = O. (1.1) 

Let us denote by h,l a process of duration T/;t which for ;t > 0 is defined in terms of the given process h 

in the following manner: 

h a (s) = ;th (;ts). (1.2) 

It is easy to notice that the following relationship for ha follows from (1.1): 

T/;t 
h~ (T/2) = f ;th (2s) ds = h i (T) = 0.  (1.3) 

0 

Let us show now that for any 6 > 0 and any equilibrium state A~ = {to, 0 +} there exists a 20 > 0 such that 

for all 2 < ;t o 

II A~ - P~x/x IIs < a. (1.4) 

is satisfied. Indeed, introducing the notation 

Mh=sup{Ih(x) I I sE  [o, T]} 

and taking into account (1.1) we build an estimate 

(1.5) 

( i /  /i ),J2 - = - ha ~- (s) as  s % 1 2  o - s 

(I / /Ill )1/2 
= , I f  I h ( r - s ' ) 1 2 ~  ds' ~ _ ~ M h ~ ( O )  T ,  (1.6) 

0 

whence the above-formulated statement follows. It follows from this statement and the assumption of fulfilment of 

P1 [1 1 that for any C > 0 there exists a ;to > 0 such that from ;t < ;to for any state A~ and process h,l (where h is 
the earlier defined process) the following relationship.-f.ollows: 

~ ( ~ ,  h~) > - r  (1.7) 

Let us write the right side of this inequality in detail taking into account (2.1) [1 ], (1.11) [1 ], and (1.13)- 
(1.16) [1 ], and rearrange it by changing the integration order and substituting variables: 

- C < f ( E (% + h~ ( ,))  , h a (r) ) at + f (  f R (s) h x (r - s) as , h x O:) ) dr = 
o o o 

T/a 
= f ( E (e 0 + h i (2rl) , 

0 
h ( 2 v ) ) ; t d r  + f ( R(s)  h ( 2 ( z - s ) ) 2 d s  , h ( ; t Q ) ; t d r =  

0 0 

T d T T ( )  
f (F_.eh(v), ~ e h ( V ) ) d r +  f f ( R  ~ h ( r - s ) ,  h ( r ) ) d r d s .  
0 o 

(1.8) 
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Here e h is defined in accordance with (1.17) [1 ] and in view of (I.1) it has the property eh(O) = eh(T). 

It can be shown that the last term in (1.8) approaches zero when;t --, 0. Indeed, using the definitions (1.20) 

[1 ], (1.21) [1 ], and (1.5) we obtain 

< _ f r  
0 

f f ( R  h ( r - s ) ,  h ( Q ) d r d s  < 
0 

" (: I;) I;I ) f I h (r - s) l I h (r) l dr ds <- M~hT r ds + r ds < 
s o 

<_ M~hT ( v'X 7(0) + TF' (1 /v~  )). (1.9) 

The latter expression approaches zero when 2 --, 0 since F(~) = 0. Because of this fact we obtain, by making 

the passage to the limit 2 -, 0 in (1.8) and taking into account that C > 0 is arbitrary, we obtain 

r d (1.10) f ( E~ h (r),  ~ ~h (r) > a~ _ 0 
0 

for any e h such that eh(O) ffi eh(T). As is shown in [6, Chap. 1, para. 2 ] from this fact symmetry of E follows, i.e., 
E = E x. 

Now we turn to the proof of the fact that the inequality (2a) follows from P1 [1 ]. We consider PI  [1 ] to 

be fulfilled, and for an arbitrary equilibrium state A~ = {eo, 0 +} we consider the process ho of duration To = T + 

TI + TZ, which is a composition of an arbitrary process h of duration T, a process hi of duration Tl, and a stationary 

process u of dura t ion/ '2 ,  with hi having a special form: 

1 h i (1.11) h I (s) = - T--t" (T) = const ,  

where the notation of (1.16) [1 ] is used. 

Thus, 

h 0 = ho hlO u ,  (1.12) 

and, as is clearly seen, 

h~ (To) = 0. (i.13) 

Let us consider the expression on the left side of (2.3) [1 ] for the specified state and process. Using the 

definitions of the norm, the process, the associated trS"nsformation, and the composition of processes ((1.5) [1 ], 

(1.7) [1 ], (1.13)-(1.16) [1 ]) this expression can be represented as follows: 

II :~ - ~ :~ H,= l~ ~ - ,~ ~o) t ~ + : ~ <,)~l,~ ~o), ~ d~ + 
0 

T2+T I " 2 T O i 1 / 2  
+ f ~ (s )  ~ ( T )  d s +  f ~ ( s ) l h ( T o - s ) l E d s  (1.14) 

T 2 TI T 1 + T 2 

Using (1.13) and the fact that ~(-) decreases monotonically we obtain the following upper estimate for 

(1.14): 

[11  I l/2 
II~ p ~ l ,  ~ 2T2+T ~ 12 

- = f ~(s) d s +  f I h(~) ~ ( r  o - s )  as <_ 
s T1 T 2 0 
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[ ]xJ  [h, 2 ]lJ2 
< I h i ( t ) l  2 2)i I (731 +( iht2) i  - T1 ~ (T 2) + ([hi (T) ~ (T 2 + TI) < TI (T) V~-(Tz) . (1.15) 

Thus, it is clear that for arbitrary ~ > 0, TI > 0, T > 0, and h E ,~ one can choose a T2 large enough to 

satisfy the condition 

[hi (731 2 2)i (1.16) 
Zl + (Ihl (T) ~/~(T2) < 6 .  

since lim ~(T) -- 0, and the expression in the square brackets does not depend on T2. Substituting (1.16) into (1.15) 
T-*0 

we find that for any ~ > 0 one can choose a / ' 2  such that condition (2.3) [1 ] is satisfied for the chosen state and 

process. It follows herefrom that, in view of the assumption of the applicability of P1 [1 ], for any 62 > 0 one can 

choose a T 2 such that for any h and T 1 the condition 

~(Ag, ho) > -  e .  (1.17) 

is satisfied. We write the right side of this inequality in detail using definitions (1.13)-(1.16) [1 ], (2.1) [1 ], and 

(1.12): 

TO T r 
f ( E (to + h~ (r)), h0 (r)) dr + f f ( R (s) h (r - s), h (s)) a s  d r  - 
0 0 0 

iT+r1( 1,-~o , hi r 
TIfT [ ~1 ( R (s) hi (T) (T) ) ds + ~-T f ( R (s) h (r - s) , hi (T) ) ds d r > - ( 2 .  (1.18) 

We calculate here the first integral using the fact that E = E • and change the variable in the first and last integrals: 

1 1 
-~ ( E ( e  0 + h ~ ( T 0 ) ) ,  e 0 + h ~ ( T 0 ) ) - - ~  (F20,  e 0 ) +  

T ~f T+T1 r - T  hi , hi 
+ f ( R ( r - s )  h ( s ) , h ( r ) ) d s d r +  1 f f i R ( s )  (73 ( T ) ) d s -  

O 0  --~11T 0 

T+TI T 
1 f f ( R ( r - s )  h(s ) ,  h i ( T ) ) a s d r > - r  (1.19) 

T1 T r - T  

It should be noted that in view of (1.13), the first two terms in (1.19) cancel out. In addition, an estimate 

can be built for two last terms in (1.19) using the properties of the function 7 defined in (1.21) [1 ]: 

T+T1 z-T 
1 h i h i fr fo ( R (s) (73, (T) ) ds - 

T+TI T+ T 1 T 1 h i 2 
1 f f ( r t ( r - s )  h(s) ,  h i (73 )dsdr  -< I (731 f ( 7 ( 0 ) -  

T 1 T r - T  ~11 T 

T 
- 7 ( z -  T))dr + I hi(T)[ f ( 7 ( T _ s ) _ T ( T  + T 1 - s ) )  Ih(s) l ds<_ 

TI o 

< 
T 

1 2 Ihi(T)l f Ih(s)l ds. I h i(731 7(0)= r~ o (1.20) 
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In view of these facts the inequality (1.19) is reduced to 

T hi I T / f f ( R ( r - s )  h ( s ) ,  h ( v ) ) a s d v > -  (T) I 7(0) I h i (1.21) 0 0 TI (T)[ + f0 Ih(s) lds  - C .  

Inasmuch as (1.21) should be satisfied for any TI and C (including both arbitrary large Tl and arbitrary 

small C) it follows from this inequality that 

T 

f f ( R (r - s) h (s), h ( 0 )  ds dr >_ O. (1.22) 
0 0 

Hence by virtue of Lemma 1 [1 ], the inequality being proved follows. 
2. The Proof of Sufficiency in Theorem 1. In order to prove sufficiency one must, assuming that conditions 

(1) and (2) are satisfied, show that P1 [1 ] is satisfied in this case. For an arbitrary state A -- {a, f} E $ and any 

> 0 we choose a process h of duration T such that the inequality 

II A - P~Al l t  < 6 ,  (2.1) 

is satisfied, and show that if (1) and (2) hold, and, in view of Lemma 1 [1 ] and (3.8) [1 ], for any C > 0 in (2.1), 

a 6 can be chosen such that for the state and process under consideration 

a ( h ,  h) > - C.  (2.2) 

is satisfied. 
Let us write (2.1) explicitly: 

Hence 

Ice - ( a  + h i (T)) I 
T 

+ f ~(s)  If(s)  - h ( T -  s)12ds + 
0 

+ 

oo ] 1/2 
f ~(S) If(s) --/(S-- 7')12ds <6.  
T 

[hi (T)l 2 < ~2, (2.3) 

T -- 62 
f ~ (s) l/(s) - h (T s) 12 ds < , 
0 

(2.4) 

7 ~(s) [ f ( s ) - f ( s - T ) l  2 d s < 6 2 .  
T 

The left side of inequality (2.2), which must be proved, is as follows: 

T E a ( A ,  h) = f ( h ( v ) ,  E ( a + h  i(Q) + f R(s) h ( r - s ) d s +  
0 o 

Let us introduce the notation 

def 
g(s) = h ( s ) - f ( T - s ) .  

In view of (2.7), inequality (2.4) can be written as follows: 

7T R (s) f (s - v) ds ] )dr .  

(2.5) 

(2.6) 

(2.7) 
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T 
f ~ (s) [g (T - s)[ 2 ds < 6 2 . (2.8) 
0 

We express h in (2.6) in terms of g and f using (2.7), first integrating the first term in the square brackets and 

changing the variable in the integrals: 

1 (  h i h i ) a ( A ,  h ) = ~  \ ( ( a +  (T)),  E ( a +  ( T ) ) ) - ( a ,  E a )  + 

T T 

+ f f ( f ( r - r ) ,  R ( r - s )  f ( T - s ) ) a s d r +  
0 0 

T if 

f f ( / ( T  - r), It (r - s) g (s)) as dr + 
o o 

Too  T r  
+ f f ( f ( T - O ,  I t ( r+s)  f ( s ) ) d s d r +  f f 

O0 O0 
( g (r) , R (r - s) f (T - s) ) ds dr + 

T r Ter def 
+ f f ( g ( r ) ,  I t ( r - s )  g ( s ) ) a s d r +  f f ( g ( r ) ,  R ( r + s )  f ( s ) ) a s d r =  

o o  o o  

def (2.9) 
= C + I  1 + 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ,  

where notations introduced after the d=ef sign correspond to the order of the terms in expression (2.9). 

Now, based on inequalities (2.3)-(2.5) (or (2.8) instead of (2.4)) and taking into account properties (1) 
and (2), we estimate the values of all the terms in (2.9). 

In view of (2.3) we obtain for C: 

1 h i h i IcI--~l((a+ (r)),E(a+ (T)))-(,~,ea)l---l(hi(T), ea}+ 

l h i  1 ( 1 ) . ( 2 . 1 0 )  + ~ - (  ( T ) , E h i ( T ) ) I - - - I [ E ] l l a l l h i ( T ) l + - ~ t [ E ] l [ h i ( T ) 1 2 < l [ E l l  l a l 6 + ~ 6 2  

Further, in obtaining estimates of integrals I 1 in (2.9) we take into account the fact that f E ~C and, 

consequently, has limited support, i.e., for any f there exists a T / >  0 such that f(s) = 0 for all s > Tf. We consider 
separately the cases of T < T/and T > 7"s in (2.9). 

A. T < 7"/. To obtain an estimate of the third integral 

Too  T 
13= f f ( f ( T - v ) ,  I t (r  +s)  f ( s ) ) d s d r  = f 

0 0 0 

I3 in (2.9) we transform it as follows: 

T 
f ( / ( T - r ) ,  I t ( r  + s) f ( s l ) d s d r  + 
o 

T o o  

+ f f (  
o T 

f (T - r) , R (v + s) (f (s) - / ( s  - T)) ) ds & + 

T o o  

+ f f ( f ( Z  - v),  R (v + s + T ) f ( s )  ) as dr. (2.11) 
o T 

The last of the integrals has a structure similar to that of integral 13, except that the function R(. + 73 

stands in the integral instead of R(.) ;  therefore a transformation similar to that used in (2.11) can be applied to 

the integral. As a result, it will be represented as a sum of three integrals to the last of which transformation (2.11) 
can be again applied, etc. Repeating this procedure N + 1 times we obtain 

N T T 
13=~: ff(~(T-~),R(~+s+kT)y(s))d~d~+ 

k=0 0 o 
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Too  N 

+ f f ( f  (T - ~), ~ R (r + s + kT) De (s) - f (s - 7")) ) ds dr + 
0 T k=O 

T 0o 

+ f f ( f ( T -  r), R ( r  + s + ( N +  1) T) ( f ( s ) - f ( s -  T) ) )dsaz .  (2.12) 
0 T 

Inasmuch as the function R is absolutely integrable on R +, one can pass to the limit N -, oo since the series 
in (2.12) converge. In addition, since R(*o) = 0 the second term in (2.12) vanishes in this case. Passing to the limit 

and performing substitution of the variable in the integrals of the first sum in (2.12) we obtain 

T T  
I a= ~, f f ( / ( T - O , R ( r - s + k 7 3 f ( T - s ) ) a s d r +  

k=0 0 0 

T o o  N def , N 

+ f f ( Z ( T - r ) ,  ~, R ( ~ + s + k T )  f f ( s ) - f ( s -  T ) ) ) d s d r = Z a + Y  a. (2.13) 
0 T k=0 

The notation l'a, 13' here corresponds to the order of the terms. 

It should be noted that in view of Lemma 2 [1 ] from (2) which was assumed to be satisfied the inequality 

I 1 + 1' 3 >_ O. (2.14) 

follows. 
Let us estimate the sum entering into integral Ia' using the functions F'and r-defined in (1.20) [1 ] and 

IN 1 y~ R ( ,  + s + kT) 
k=O 

(1.23) [1 ]: 

N 1 T 
_< ~ 7(~ + s + ~r) _< 7(r + s) + -~ f 7(~ + s + ,t) da = 

k=0 0 

=7(z+s)+-~ r(r+s). (2.15) 

The validity of the estimate follows from the definition and monotonicity of the function ~.. 
With the use of (2.15) and the Cauchy-Schwarz-Bunyakovskii inequality the following estimate of the 

integral Ia can be built: 

T o o  
n 

1131 ---f f I f ( T - ~ ) l  
0 T 

I N 

k=0 
[ f ( s ) - f ( s - T ) [  dsdr<_ 

TOo 1 ~.(~ + S ) ) l f ( s ) _ f ( x _  T)[ dsdz  < _< f f I f ( T - r ) [  7 ( r + s ) + y  
0 T 

<_ f 
0 T 

1/(T - ~) [ z ( 7(r 
1 / 2  

1 ~ ' ( r + s )  l dsd~ x + s) +-~  
) 

( ( l ) 
0 T 

We introduce the following notation: 

If (s) - y (s - 7312 ds dr ) t / z (2.16) 

def 
Mf= suP { If(s)l I s ~ R + } ,  (2.17) 
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def 
= ( (;(o) rr + z(o))(M,r~ + ~ -),~2 

= 
(2.18) 

where 7" is defined by analogy with (1.23) [1 1, and MI and M are the constants defined in (2.12) [1 ] and (2.5) 

[1]. 
Using this notation and considering the monotonicity of the functions ?'and ~ a n d  inequalities (2.5) and 

(2.13), as well as the condition T _< T/, we can continue estimate (2.16): 

�9 1 ? ( r + s )  d s d r  x 1131 --- F(r + s) + -~ 
0 

• 

)1J2 
(7"(s) T + ~'(s)) If  (s) - f (s - 7") 12 ds <- 

T 

<_ 
( (  1))l J2( )112 

M~/T ~'(0) + -~ 7 0 )  ~ (MIT + M) I/(s) - / (s - 7312 as <_ 
T 

(2.19) 

Let us estimate one of the three integrals 12, I4, and 16 in (2.9). Taking into account the inequality 

T [2 52 (2.20) 
f I g ( T - s )  ds<~(---'~, 
0 

which follows from (2.4), the notation (1.17) [I]  and (l.20)-(1.23) [1 1, and the Cauchy-Schwarz-Bunyakovskii 

inequality we obtain for the integral 12: 

T ) 1/2 
112[ -< f f I f ( T - r ) [  2 ] [ R l ( ~ - s ) l l  dsdr  x 

0 0 

r ~ 12 )1/2 
• f f I g (s) [ [R] (3 - s) ll ds dr <_ 

0 0 

(T )lJ2(T 1112 <- f [f(T-r)12(7(O)-7(r))dz f Ig(s)12(7(O)--i(T-s))ds <_ 
0 0 

<_ M j  (o) ~r rs ~ . 
1/2 ( t~2 ) 

Similar calculations permit similar estimates for integrals 14 and 16, so that for the sum of these three 
integrals we obtain 

/ .  
Iz21 + 1141 + 1161-< 3M/7(0) V ~ 5.  (2.21) 

Finally, for integral 15 in (2.9), which remains untreated, we obtain in view of (2) and Lemma 1 [1 ]: 

T 

15= f f ( g ( z ) ,  R ( r - s )  g(s))dsdT;>_O. (2.22) 
0 0 

Combining estimates (2.i0), (2.14), (2.19), (2.21), and (2.22) in (2.9) we obtain a final estimate of the 
action of the process h under consideration for the case of T _< Tf 
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a(A, h)>_- t [EIIIala-~-I[E]I  -M/~ga-3M/7(O) ~ a. 

B. We now consider the opposite case; namely, we let 

T>-Tf .  

(2.23) 

(2.24) 

The boundedness of the support of the function f within the interval [0, T/] and condition (2.24) allow one 

to represent now inequality (2.5) in the form 

r+ 9 
f ~ (0 I/(s - 7912 ds < 6 2 . 
T 

(2.20 

Hence it follows that 

where 

~( r+  r/)_<62 ( T+~T f ) - I 6 2 
I/(~- r)12d~ =Ti, (2.26) 

1/= ? [ f (s ) lZds .  (2.27) 

We start with the derivation of an estimate of integral 13 in (2.9), and to do this we use the inequalities 

(2.25) and (2.26) and Lemma 4 [1]: 

lhl = (f(T- 0 , R(r+s)/(s))dsdr <_ f [f (T - r) l -: (r) M:dr <_ 
r - r :  o T-T/ 

M~irtM(2r:) 62. 
<_ 7 (r - r:) r: <_ (r + r:) < I: 

(2.28) 

Here M(2T/) is the constant introduced in Lemma 4 [1 ]. 
Then, in view of (2.24) we estimate the sum of the integrals 12 + 14 from (2.9): 

112 + I41 <- f f ( f  (T - z) ,  R (r - s) g (s)) ds dr + 
T-T/ 0 "-*-" 

+ f f ( g ( O , R ( r - s ) / ( r - s ) ) a s d r  . (2.29) 
r - r / r - r ~  

Using the Cauchy-Schwarz-Bunyakovskii inequality and changing the integration order where necessary, we obtain 

a continuation of estimate (2.29): 

X 

[ I2+I41  _< f I f ( T - r )  l 2 [ [ R ( r - s ) ] [  dsdr • 
~-~: o 

1 / 2  

f [ g ( s ) 1 2 l [ R ( r - s ) ] l d s d  T+ f f I g ( s ) 1 2 l [ R ( r - s ) ] l d s d  T + 
r - r /  o o r - r /  
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X 

+ I f ( T - r )  12 l / R ( /  s)]l dsdr 
/ r - r / r - r /  

)l J2 
f f I g (r) [ 2 [ [R (r - s) I I ds dr <_ M~/Tff (0) x 

r-r/r-r/  

I r r-r/ 11/~ 7(0) f Ig(s) 12as+ f [g(s) 127(T- T z - s )  ds 
T - T /  0 

+ 

[g(v)[2 dr 
r - r /  

1 / 2  

(2.30) 

In order to continue this estimate we need the following inequalities, which follow from (2.8) and Lemma 4 [1 ]: 

, - p  

r 12 "[ r 62> f r [ g ( T - s )  ds> j ~ ( s )  [g(T-s)12ds>_~(7"/) f [g(s)12ds, (2.31) 
0 0 T - T /  

r - r  i 
f 
0 

T 
I g (s) 12 7 (7" - v / -  s) as <_ M(r ? y I g (s) 12 ~ (7" - s) as = 

0 

T 
= M(Tf) f [g (T - s) l 2 ~ (s) as < M(T/) 52 . (2.32) 

0 

Using these inequalities we obtain 

( ) , /2() , /2)  
112 + t41 <- + 5 =  

For further derivation it is convenient to introduce the function u2: [0, 2T] --, S and to define it as follows: 

( s ) =  / ( T - s )  for s E  [0, T l ,  (2.34) 

g(s-7")  for s ~  [0, 2T] .  

Using this definition and changing integration variables we obtain for the sum of the three untreated integrals in 
(2.9): 

2T 

I 1 + 15 + 16 = f f ( ~ ( r ) ,  R (r - s) tp (7")) ds dr >. O. 
0 0 

(2.35) 

Here the inequality sign follows from Lemma 1 [1 ] since (2) was assumed to be satisfied. Summing estimates 
(2.10), (2.28), (2.33), and (2.35) we obtain the following estimate of expression (2.9) in the case under 
consideration: 

1 ) _  _ a ( A  h ) - > -  l /E][  /c z/ 5 + - ~ 5 2  M~fT/M(2r/)52 
' z /  
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- Mr7 (0) V~/ ~ + M(T/) + c ~ .  (2.36) 

Combining inequality (2.23), which holds for T _< 7"/and (2.35) proved for T > T/, we obtain an estimate 
of the action a that holds for all T: 

a (A, h) >_. min (a,  b),  (2.37) 

where a and b are the right sides of inequalities (2.23) and (2.36), respectively. In view of the obvious fact that if 

a < 0 and b < 0 then min(a, b) -> a + b, inequality (2.37) can be transformed to 

a (A,  h) _> - A62 - B6,  (2.38) 

where 

A = I [E] I  + 
4 T/M(2rf ) (2.39) 

)i/2 (1),12) 
B = 21 tE l l  + + Mi (0) + M(Tf) + ~ . (2.40) 

Recall that, as follows from the preceding consideration, inequality (2.38) holds if the process h satisfies 

constraints (2.1). It is obvious that if for an arbitrary C > 0 we choose a 3 in (2.1) such that 

~/B 2 + 4A - B 2 
0 < 6 <  

2A 

is satisfied, then -A~ 2 - Bc~ > - ~ and, consequently, (2.2) follows from (2.38) for the state and the process 

under consideration, Q.E.D. 
Thus, the proof of the Theorem 1 is accomplished. 

The work was carried out with the support of the Fund for Fundamental Research of the Republic of Belarus 
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